Directional Locomotion of C. elegans in the Absence of External Stimuli
نویسندگان
چکیده
Many organisms respond to food deprivation by altering their pattern of movement, often in ways that appear to facilitate dispersal. While the behavior of the nematode C. elegans in the presence of attractants has been characterized, long-range movement in the absence of external stimuli has not been examined in this animal. Here we investigate the movement pattern of individual C. elegans over times of ∼1 hour after removal from food, using two custom imaging set-ups that allow us to track animals on large agar surfaces of 22 cm×22 cm. We find that a sizeable fraction of the observed trajectories display directed motion over tens of minutes. Remarkably, this directional persistence is achieved despite a local orientation memory that decays on the scale of about one minute. Furthermore, we find that such trajectories cannot be accounted for by simple random, isotropic models of animal locomotion. This directional behavior requires sensory neurons, but appears to be independent of known sensory signal-transduction pathways. Our results suggest that long-range directional behavior of C. elegans may not be driven by sensory cues.
منابع مشابه
An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion
A neural network can sustain and switch between different activity patterns to execute multiple behaviors. By monitoring the decision making for directional locomotion through motor circuit calcium imaging in behaving Caenorhabditis elegans (C. elegans), we reveal that C. elegans determines the directionality of movements by establishing an imbalanced output between the forward and backward mot...
متن کاملLocomotion analysis identifies roles of mechanosensory neurons in governing locomotion dynamics of C. elegans.
The simple and well-characterized nervous system of C. elegans facilitates the analysis of mechanisms controlling behavior. Locomotion is a major behavioral output governed by multiple external and internal signals. Here, we examined the roles of low- and high-threshold mechanosensors in locomotion, using high-resolution and detailed analysis of locomotion and its dynamics. This analysis reveal...
متن کاملA Review on Experimental Assessments of Pain Threshold in Healthy Human Subjects
A B S T R A C T There are three types of nerve fibers that are involved in the transmission of pain stimuli: C fibers (slower fibers) for thermal, mechanical and chemical stimuli, A-delta fibers for thermal or mechanical stimuli and A-beta fibers for touch stimuli. Clinically, this is crucial in making an accurate assessment of the pain level experienced by a suffering patient, in indicating th...
متن کاملThe shallow turn of a worm.
When crawling on a solid surface, the nematode Caenorhabditis elegans (C. elegans) moves forward by propagating sinusoidal dorso-ventral retrograde contraction waves. A uniform propagating wave leads to motion that undulates about a straight line. When C. elegans turns as it forages or navigates its environment, it uses several different strategies of reorientation. These modes include the well...
متن کاملMicrofluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode
This work presents a novel method to assess the condition of Caenorhabditis elegans (C. elegans) through a resistance measurement of its undulatory locomotion speed inside a micro channel. As the worm moves over the electrode inside the micro channel, the length of the electrode changes, consequently behaving like a strain gauge. In this paper, the electrotaxis was applied for controlling the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013